
Orchestrating Bulk Data Movement in Grid Environments

Sudharshan Vazhkudai
vazhkudaiss@ornl.gov

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Abstract

Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data
by addressing several system and transfer challenges inherent to these environments. This work addresses issues
involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus
Toolkit™, building middleware that (1) selects datasets in highly replicated environments, enabling efficient
scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive
statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored
sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that
predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data
downloads by up to 2 times.

Keywords: Data Grids, Replica Selection, Predictions, Co-Allocations, Scheduling, Parallel Downloading, Data
Movement, Middleware.

1.0. Introduction

As the coordinated use of distributed resources, or Grid computing, becomes more commonplace, basic resource
usage is changing. Many recent applications use Grid systems as distributed data stores [DataGrid02, GriPhyN02,
HSS00, LIGO02, MMR+01, NM02], where pieces of large datasets are replicated over several sites. For example,
several high-energy physics experiments have agreed on a tiered Data Grid architecture [HJS+00, Holtman00] in
which all data (approximately 20 petabytes by 2006) is located at a single Tier 0 site; various (overlapping) subsets
of this data are located at national Tier 1 sites, each with roughly one-tenth the capacity; smaller subsets are cached
at smaller Tier 2 regional sites; and so on. Therefore, any particular dataset is likely to have replicas located at
multiple sites [RF01, LSZ+02, LSZ+03]. Such replicated, bulk data is required to be moved across the Grid in
response to user queries.

Moving bulk data in Grid environments is mired by several nontrivial issues. First, information on the state and
behavior of replica/storage locations needs to be identified, gathered and exposed so they can be discovered in the
context of an information service. Second, suitable locations from which to fetch the dataset needs to be identified
based on heuristics that combine user specified requirements/policies and current system behavioral trends. Further,
the scheduling needs to be accomplished in a decentralized fashion so it can scale to Grid-proportions. Third, quality
of service agreements, negotiations and guarantees—pin replicas for future access, reserve storage to stage data in
the future, or reserve network bandwidth—need to be coordinated to maximize usage. Fourth, auto-tuning of data
movement protocols—setting TCP buffers or parallel streams—needs to be enabled so data transfer throughput can
be maximized. Large data transfers with default operating system buffer sizes (64 KB) and no parallelism will
almost certainly result in poor rates rendering them unsuitable for Grid environments. Finally, the bulk data transfer
should be monitored for progress and deterioration so corrective measures can be taken in case of performance
degradation. Thus, we need performance metrics to determine transfer degradation.

Aforementioned are but a few—yet critical—set of activities in Grid scheduling. Bulk data movement is usually
associated with some computation to be run alongside, leading to a larger question of finding schedules for both data
and computation. In this paper, however, we address a few steps essential to orchestrate the movement of massively
replicated bulk data (of the order of several hundred megabytes to gigabytes) in Grid environments, bringing
together, in one fold, several of our previous work. We present our work in the context of the Globus ToolkitTM

[FK98, Globus02]. The Globus Data Grid provides a convenient architecture for scientific experimental groups to
share and democratize data access.

We discuss the design and implementation of a scalable, decentralized replica selection service that uses information
regarding replica location and user preferences to guide selection from among storage replica alternatives [VT00,
VTF01]. In Section 2 we first present a basic replica selection service design, then show how dynamic information
collected using Globus information service capabilities concerning storage system properties can help improve and
optimize the selection process. We demonstrate the use of Condor's [LLM88] ClassAds [RLS98] resource
description and matchmaking mechanism as an efficient tool for representing and matching storage resource
capabilities and policies against application requirements.

Different sites may have varying performance characteristics because of diverse storage system architectures,
network connectivity features, or load characteristics. Users (or brokers acting on their behalf) may want to be able
to determine the site from which particular data sets can be retrieved most efficiently, especially as data sets of
interest tend to be large (1–1000 MB). Since large file transfers can be costly, there is a significant benefit in
selecting the most appropriate replica for a given set of constraints [ACF+02, VTF01]. One way a more intelligent
replica selection can be achieved is by having replica locations expose performance information about past data
transfers. This information can, in theory, provide a reasonable approximation of the end-to-end throughput for a
particular transfer. It can then be used to make predictions about the future behavior between the sites involved. In
our work we use GridFTP [AFN+01], part of the Globus ToolkitTM for moving data, and present predictions using
regression techniques to forecast the performance of GridFTP transfers for large files across the Grid [VS03]. Our
approach combines end-to-end application throughput observations with network and disk load variations and
captures whole-system performance and fluctuations in load patterns. Our predictions characterize the effect of load
variations of several shared devices (network and disk) on file transfer times. In Section 3 we develop a suite of
univariate and multivariate predictors that can use multiple data sources to improve the accuracy of the predictions
as well as address Data Grid variations (availability of data and sporadic nature of transfers). These predictions are
thematic to the replica selection problem. Our results indicate a prediction accuracy of 15% error for the testbed
sites.

Data locations, once identified and ranked using our selection and prediction techniques respectively, can then be
grouped together to collectively deliver the replica. Due to varied performance characteristics of the several replica
locations and the transient load in the links connecting them to the client, downloading datasets even from the best
of servers can often result in pedestrian transfer rates. A promising alternative is to download data from multiple
locations, establishing multiple connections in parallel. With this approach, instead of downloading the entire dataset
from a single sever, unique partial copies of the dataset are fetched from multiple servers in parallel that are later
reassembled at the client end. In Section 4 we develop a basic architecture for co-allocating Grid data transfers and
build a few techniques for downloading data in parallel, from multiple servers [Vazhkudai03]. We develop three
techniques: (1) brute force co-allocation, (2) history-based co-allocation of flows and (3) dynamic load balancing.
We apply these techniques to the GridFTP data movement tool, and evaluate our approaches by conducting
performance analysis experiments in a wide-area testbed. Our results indicate a significant increase in bandwidth
due to distributed downloads and denote that dynamic solutions outperform static approaches.

2.0. Scheduling Grid Data Transfers—Replica Selection

2.1. Scheduling Architecture

Traditionally, resource brokers have adopted a centralized approach to resource management, wherein a single node
is responsible for decision making. An example of such an environment is the Condor [LLM88] high-throughput
computing platform, wherein a central manager is responsible for matching resources against jobs. Obvious
disadvantages to this approach are scalability and a single point of failure. Of course, Condor has an efficient
recovery mechanism to address failure and has been proven to scale to thousands of resources and users.

But there is a more fundamental problem with
this centralized approach when applied to Grids.
In these highly distributed environments, there
are numerous user communities and shared
resources, each with distinct security
requirements. No single resource broker is likely
to be trusted by all of these communities and
resources with the necessary information to
make decisions. At the extreme, each user may
need his or her own resource broker, because
only that user has the authorization to gather all
of the information necessary to make brokering
decisions.

Alternatively, we can adopt one of two
decentralized models. First and commonly
referred as sender-initialized scheduling, is an approach wherein entities requiring access to the specific resource
initiates and performs the scheduling. Second, is a receiver-initialized scheduling wherein entities in possession of
the resource perform the selection. The latter approach would require addressing the motivation for a resource owner
to volunteer to perform the scheduling. For this reason, we have designed a decentralized storage brokering strategy
wherein every client that requires access to a replica performs the selection process rather than a central manager
performing matches against clients and replicas (Figure 1).

2.2. Replica Selection Sequence in Globus Data Grid

An application that requires access to replicated data begins by querying an application-specific metadata repository,
specifying the characteristics of the desired data (Figure 2). The metadata repository maintains associations between
representative characteristics and logical files, thus enabling the application to identify logical files based on
application requirements. Once the logical file has been identified, the application uses the replica catalog to locate

all replica locations
containing physical file
instances of this logical file,
from which it can choose a
suitable instance for
retrieval.

The entity that identifies the
suitable instance of a
replicated file based on
application requirements is
referred to as a broker. In
effect, the responsibility of
the broker is to map
application requirements
against storage resource
capabilities obtained from an
aggregate information
service (Figure 2). In the

following section, we discuss the storage broker in detail.

2.3. Storage Broker

Request Specification: Data scheduling requests are represented in terms of classified advertisements, used
extensively in Condor for job placement. ClassAds provide a rich environment for resources and jobs to specify

Inquiry

Registration

Figure 1: Aggregate directory Services (D), with resources
(R), and Broker (B). Depicts resource registration and broker
enquiries to directory servers.

Registration

Inquiry

B

D

D
R

R
R

B

Replica
Location 1

Replica
Location 2

Replica
Location 3

GridFTP
 Data Transfer

3

Metadata
Catalog Application

Replica Selection

Information
Service

1 2
Replica
Catalog

Attribute Specification

Logical Collection
Multiple Locations

Selected
Replica

Performance
Information,
Predictions

Figure 2: Sequence of event leading to the selection of replicas in the Globus
DataGrid environment [Globus02].

their requirements and capabilities in terms of attribute-value pairs. Further, it provides efficient matching and
ranking mechanisms. An application might advertise its request to the broker as follows:

hostname = “comet.xyz.com”;
reqdRDBandwidth = 5M/sec;
rank = other.AvgRDBandwidth;
requirement = other.AvgRDBandwidth > 5M/sec;

The application indicates its preference for a storage resource that offers a maximum transfer bandwidth greater than
5 MB/sec.

Discovery: Information-discovery primarily involves searching for relevant details and capabilities of resources
from multiple administrative domains by querying aggregate directory servers (Grid Index Information Servers,
GIISs), catalogs, etc. The GIIS typically caches/obtains data in the form Lightweight Directory Access Protocol
(LDAP) objectClasses that are essentially groupings of data represented in terms attribute-value pairs. Examples of
objectClasses include information on resources such as: cpu, storage, networks, etc., that can be obtained from
specific information prociders. Searches can further be strengthened by directing more specific queries to individual
resources (Grid Resource Information Servers, GRISs) based on a subset of matched resources, for up-to-date
dynamic information. The following is a simple ClassAd describing the capabilities of a storage resource:

hostname = “dpsslx04.lbl.gov”;
volume = “/dev/sandbox”;
availableSpace = 50G;
AvgRDBandwidth = 6M/sec;
requirement = true;

This ClassAd describes a volume of a storage resource by specifying its attributes. The ClassAd can also specify
usage policy enforced by the resource using the “requirement” attribute. When two ClassAds are being matched, a
MatchClassAd is created that contains both ClassAds. Each ClassAd can refer to the other ClassAd by using the
“other” keyword. We will discuss the storage capability objectClass in more detail in subsequent sections.

Matching, Ranking, Action: Information obtained through discovery is in the form of LDAP objectClasses, while
requests are in ClassAds. Search results are converted to ClassAds and then matched and ranked against requirement
specification. A list of resources, once established, can then be used to fetch data from, using GridFTP.

2.4. Data Access Service

In the previous sections we described our decentralized architecture for replica selection. But, intelligent replica
selection requires information about the capabilities and performance characteristics of storage systems (replica
locations). Broker decisions are only as good as the information they have access to. In the snippet ClassAds above,
we used “avgRDbandwidth” as a metric to decide from among a set of replica locations. GridFTP is the tool widely
used to move data in the Grid and the avgRDbandwidth is the average GridFTP bandwidth between the site hosting
the replica and the site requesting it. It is such predictive information we are interested in for brokering. In this
section, we briefly highlight how such storage system functionality can be exposed in the context of an information
service so it can be discovered by a broker.

We are particularly interested in the speed of a storage system, or rather, the time that the storage system will take to
deliver a replica. One approach to determining this information is to construct a performance model of the relevant
components (e.g., see [SC00]). We favor an alternative approach in which historical information concerning
GridFTP data transfer rates is used as a predictor of future transfer times. In brief, storage systems are configured to
provide information on their own behavior and performance. Attributes such as maximum achievable read and write
transfer bandwidths across networks can help an application choose one replica over another. Storage replicas
monitor their own performance to gather and publish attribute data. This feature can be extended further, to obtain
statistical information based on the performance data, such as average transfer bandwidths and their standard
deviations that can help predict the behavior of a particular replica. Further, we expect that there will be significant
reuse of storage servers by clients, thereby justifying performance information on a per source basis, which provides
a client useful information on end-to-end transfer performance. For example, a simple heuristic of combining past
observed performance with current load of server might give a client a reasonably good choice of server.

We instrumented the GridFTP server by adding mechanisms to log performance information for every file transfer.
Log entries include source address, file name, file size, number of parallel streams, TCP buffer size for the transfer,
start and end timestamps, total time consumed by the transfer, aggregate bandwidth achieved for the transfer, nature
of the operation (read or write), and logical volume to and from which file was transferred. For the GridFTP
monitoring data, we built an information provider that accesses the log data to advertise a set of recent
measurements as well as some summary statistic
data. To generate statistical information on
transfers, we developed LDAP shell-backend
scripts to filter the information in the logs. In
addition, we developed schemas for this data.
Figure 3 presents a fragment of the output from a
GridFTP information provider (details include:
prediction information, GridFTP server and port
information, etc.). Combined, these enable a
GridFTP performance information provider to
process logs by building schemas and scripts to
publish statistical information. Replica locations
(sites running GridFTP servers) publish such
performance information using GRIS servers.

3.0. Predicting Bulk Data Transfers

In the following sections we discuss statistical techniques to synthesize bulk data transfer forecasts which can then
be used to differentiate the various replica locations. Our goal is to obtain accurate predictions of file transfer times
between a storage system and a client. Achieving this can be challenging because numerous devices are involved in
the end-to-end path between the source and the client, and the performance of each (shared) device along the end-to-
end path may vary in unpredictable ways.

One approach to predicting this information is to construct performance models for each system component (CPUs
at the level of cache hits and disk access, networks at the level of the individual routers, etc.) and then to use these
models to determine a schedule for all data transfers [SC00], similar to classical scheduling [Adve93, Cole89,
CQ93, Crovella99, ML90, Schopf97, TB86, ZLP96]. In practice, however, it is often unclear how to combine this
data to achieve accurate end-to-end measurements. Also, since system components are shared, their behavior can
vary in unpredictable ways [SB98]. Further, modeling individual components in a system may not capture the
significant effects that these components have on each other, thereby leading to inaccuracies [GT99].

Alternatively, observations from past application performance of the entire system can be used to predict end-to-end
behavior. The use of whole-system observation has relevant properties for our purposes. These predictions can, in
principle, capture both evolution in system configuration and temporal patterns in load. A by-product of capturing
entire system evolution is enhanced transparency, in that we can construct such predictions without detailed
knowledge of the underlying physical devices. This technique is used by Downey [Downey97] and Smith et al.
[SFT98] to predict queue wait times and by numerous tools (Network Weather Service [Wolski98], NetLogger
[NetLogger02], Web100 [Web100Project02], iperf [TF01], and Netperf [Jones02]) to predict the network behavior
of small file transfers. We adopted the use of end-to-end GridFTP measurements, capturing whole-system behavior,
obtained through the instrumentation process described earlier to derive predictions.

3.1. Univariate Predictors

In this section we describe some of the predictors we developed, categorize possible approaches into mean-based,
median-based, and autoregressive techniques. These predictors are applied to a single variable, namely the GridFTP
transfer logs between any site pair. We use several variations of each of these models in our experiments.

Mean-based, or averaging, techniques are a standard class of predictors that use arithmetic averaging (as an estimate
of the mean value) over some portion of the measurement history to estimate future behavior. The general formula
for these techniques is the sum of the previous n values over the number of measurements. Mean-based predictors
are easy to implement and impose minimally on system resources.

Figure 3: A fragment of the output from the GridFTP
performance information provider registered with the GRIS at
LBL.

GridFTP Information Provider Output
dn:"140.221.65.69,
hostname=dpsslx04.lbl.gov,dc=lbl,dc=gov,o=grid"
cn:"140.221.65.69"
hostname:"dpsslx04.lbl.gov"
gridftpurl:"gsiftp://dpsslx04.lbl.gov:61000"
minrdbandwidth:1462K
maxrdbandwidth:12800K
avgrdbandwidth:6000K
avgrdbandwidthtenmbrange:5714K

A second class of standard predictors is based on evaluating the median of a set of values. Given an ordered list of t
values, if t is odd, the median is the (t+1)/2 value; if t is even, the median is half of the t/2 value added with the
(t+1)/2 value. Median-based predictors are particularly useful if the measurements contain randomly occurring
asymmetric outliers that are rejected. However, they lack some of the smoothing that occurs with a mean-based
method, possibly resulting in forecasts with a considerable amount of jitter [HP91].

The third class of common
predictors is autoregressive models
[GP94, HP91, Wolski98]. We use
an autoregressive integrated
moving average (ARIMA) model
technique that is constructed using
the equation

G' = a + bGt-1,
where G' is the GridFTP prediction
for time, t, Gt-1 is the previous data
occurrence, and a and b are the

regression coefficients that are computed based on past occurrences of G using the method of least squares. This
approach is most appropriate when there are at least fifty measurements and the data is measured with equally
spaced time intervals. Our data does not meet these constraints, but we include this technique to do a full
comparison. The main advantage of using an ARIMA model is that it gives a weighted average of the past values of
the series, thereby possibly giving a more accurate prediction. However, in addition to requiring a larger data set
than the other techniques to achieve a statistically significant result, the model can have a much greater
computational cost.

Further to this, we use measurement and temporal windows that limit the datasets based on number of values or on
time. Filtering in this way is based on the assumption that recent measurements are more reflective of current system
behavior. Figure 4 summarizes our various predictors.

3.2. Multivariate Predictors

The obvious downside of univariate predictors has nothing to do with the predictors themselves but more so with the
nature of data transfers on the Grid. Because of the sporadic nature of transfers, predictors based on log data alone
may fail to factor in current system trends and fluctuations. To mitigate the adverse effects of this problem, we
introduce other periodic datastreams to expose the behavior of components in the end-to-end data path and to reveal
the current environment on the Grid. The working hypothesis here is to capture the ambience in which the GridFTP
transfers are performed so we can use it to better explain future behavior. From our preliminary assessment we
found that networks and disks contributed
up to 70% and 30% respectively of the
actual transfer time.

We used tools such as Network Weather
Service (NWS) and iostat to periodically
monitor and log network and disk behavior
respectively in the form of <timestamp,
load-value>. From our studies we also found
that NWS and iostat probes were correlated
to the eventual GridFTP throughput
achieved (up to 0.7 correlation value). Based
on this, we developed a set of multivariate
predictors using regression models to predict
from a combination of several data sources –
GridFTP log data and network load data,
GridFTP log data and disk load data, or a
combination of all three. The datastreams

 Average based Median based Autoregression
All data AVG MED AR
Last 1 Value LV
Last 5 Values AVG5 MED5
Last 15 Values AVG15 MED15
Last 25 Values AVG25 MED25
Last 5 Hours AVG5hr
Last 15 Hours AVG15hr
Last 25 Hours AVG25hr
Last 5 Days AR5d
Last 10 Days AR10d

Figure 4: Univariate predictors.

Figure 5: Sequence of events for deriving predictions from
GridFTP (G), disk load (D), and NWS (N) datastreams.

require some preprocessing before the regression techniques can be applied to them. This includes time matching the
data streams and filling-in techniques.

3.2.1 Matching

Our three data sources (GridFTP, disk I/O, and NWS network data) are collected exclusive of each other and rarely
have the same timestamps. To use regressive models on the data streams, however, we need to have a one-to-one
mapping for the values in each stream. Hence, we are required to match values from the three sets such that for each
GridFTP value, we find disk I/O and network observations that were made around the same time.

For each GridFTP data point (TG, G), we match a corresponding disk load (TD, D) and NWS data point (TN,
N) such that TN and TD are the closest to TG. By doing this, the triplet (Ni,Dj,Gk) represents an observed end-to-end
GridFTP throughput (Gk) resulting from a data transfer that occurred with the disk load (Dj) and network probe value
(Ni) backdrop.

At the end of the matching process, the three datastreams have been combined into the sequence that looks like

(Ni,Dj,Gk)(Ni+1, Dj+1, _)…(Ni+m, Dj+m, Gk+1),
where Gk, and Gk+1 are two successive GridFTP file transfers, Ni and Ni+m are NWS measurements, and Dj and Dj+m
are disk load values that occurred in the same timeframe as the two GridFTP transfers. The sequence also consists of
a number of disk load and NWS measurements between the two transfers for which there are no equivalent GridFTP
values, such as (Ni+1, Dj+1, _). Note that these interspersed network and disk load values are time-aligned. Also
note that we have described the matching process with reference to all three data sources. In the case where a
prediction uses a different number of datastreams, similar matching techniques can be employed.

3.2.2. Filling-in Techniques

After matching the datastreams, we need to address the tuples that do not have values for the GridFTP data – that is,
the NWS data or disk I/O data collected in between the sporadic GridFTP transfers. Regression models expect a
one-to-one mapping between the data values, so we can either discard the network and I/O data for which there are
no equivalent GridFTP data (our NoFill technique) or fill in synthetic transfer values using either an average over
the past day’s data (Avg), or the last value (LV). Once filled in, the sequence is as follows:

(Ni,Dj,Gk)(Ni+1, Dj+1, GFill)…(Ni+m, Dj+m, Gk+1)
where GFill is the synthetic GridFTP value. Data, once matched and filled in, is fed to regression models (Figure 5).

3.2.3. Regression Models

Simple linear regression attempts to build linear models between dependent and independent variables. The
following equation builds linear models between several independent variables N1, N2,..., Nk and dependent
variable G as follows:

G'=a+b1N1+b2N2+...+bkNk,
where G' is the prediction of the observed
value of G for the corresponding values of
N1, N2,..., Nk. The coefficients a, b1, b2, and
bk are calculated by using the method of
least squares [Edwards84]. For our case, we
built linear models between NWS (N), disk
(D), and GridFTP (G) data as explained
above, with N and D as independent
variables. To improve prediction accuracy,
we also developed a set of nonlinear models
adding polynomial terms to the linear
equation. For instance, a quadratic model is
as follows:

G'=a+b1N+b2N
2.

Cubic and quartic models have additional
terms b3N

3 and b4N
4, respectively. Similar Figure 6: Visualization comparing error, complexity of

algorithm, and components included for the site pair LBL
and ANL.

Li
ne

ar

Q
ua

dr
at

ic

C
ub

ic

Q
ua

rti
c

Netw ork+Disk
Netw ork

Disk
0
5

10
15
20
25

Pe
rf

or
m

an
ce

(%

 E
rr

or
)

Regression Model
Complexity

Component
Complexity

Network+Disk Network Disk

I

to the linear model, the coefficients in quadratic, cubic, and quartic models b2, b3, and b4 are computed by using the
method of least squares. Adding polynomial terms to the regression model can reach a saturation point (no
significant improvement in prediction accuracy observed), suggesting that a particular model sufficiently captures
the relationship between the two variables [OM88, Pankratz91]. Figure 6 shows a bar graph that compares error,
complexity of algorithm, and components included for the site pair, Lawrence Berkeley and Argonne National
Laboratories.

3.3. Predictor Performance

We evaluated the performance of our regression techniques on datasets collected over three distinct two-week
durations: August 2001, December 2001, and January 2002. In the following subsections we describe the
experimental setup, prediction error calculations, and the results obtained from these datasets.

3.3.1. Experimental Setup

The experiments we ran consisted of controlled GridFTP transfers, NWS (64KB probes every five minutes) network
sensor measurements, and disk throughput monitoring (every five minutes) between four sites in our testbed (Figure
7): Argonne National Laboratory (ANL), the University of Southern California Information Sciences Institute (ISI),
Lawrence Berkeley National Laboratory (LBL), University of Florida at Gainesville (UFL), and Boston University
(BU). All our sites comprised of 100 Mb/sec Ethernets with high-end storage.

GridFTP experiments included transfers comprising several file sizes ranging from 10 MB to 1 GB, performed at
random time intervals within 12-hour periods. We
calculated buffer sizes by using the formula

RTT * "bottleneck bandwidth in the link"
with roundtrip times (RTT) values obtained from ping
and with bottleneck bandwidth obtained by using iperf
[TF01]. Figure 7 shows the roundtrip times and
bottleneck bandwidth for our site pairs. Our GridFTP
experiments were performed with tuned TCP buffer
settings (1 MB based on the bandwidth delay product)
and eight parallel streams to achieve enhanced
throughput. Logs of these transfers were maintained at the
respective sites and can be found at [Traces02]. For each
data set and predictor, we used a 15-value training set;
that is, we assumed that at the start of a predictive
technique there were at least 15 GridFTP values in the log
file (approximately two days worth of data).

3.3.2. Metrics

We calculate the prediction accuracy using the normalized percentage error calculation:

∑ | MeasuredBW – PredictedBW |
% Error = * 100,

(size * MeanBW)
where size is the total number of predictions and the Mean is the average measured GridFTP throughput. In this
subsection we show results based on the August 2001 dataset Tables 4. Complete results can be found in [VS03].

In addition to evaluating the error of our predictions, we evaluate information about the variance in the error.
Depending on the use case, a user may be more interested in selecting a site that has reasonable performance
bandwidth estimates with a relatively low prediction error than in selecting a resource with higher performance
estimates and a possibly much higher error in prediction. In such cases, it can be useful if the forecasting error can
be stated with some confidence and with a maximum/minimum variation range. These limits can also, in theory, be
used as catalysts for corrective measures in case of performance degradation.

Figure 7: Network settings for our testbed sites. All
sites are connected through OC-12 or OC-48 network
links. For each site pair round trip times and network
bottleneck bandwidths for the link between them is
shown.

ANL

74 ms
86 Mb/sec

LBL

71 ms
 60.4 Mb/sec

57 ms
 66.6 Mb/sec

ISI UFL

29 ms
87.3 Mb/sec

51 ms
96.6 Mb/sec

BU

40 ms
60 Mb/sec

In our case, we can also use these limits to verify the inherent cost of accuracy of the predictors. By comparing the
confidence intervals of these prediction error rates, we can determine whether the accuracy achieved is at the cost of
greater variability, in which case there is little gain in increasing the component complexity of our prediction
approach. Thus, for any predictor (for any site pair and a given dataset), the information denoted by the following
triplet can be used as a metric to gauge its accuracy:

Accuracy-Metric = [PredictedThroughput, AvgPast % Error-Rate, ConfidenceLimit],
where PredictedThroughput is the predicted GridFTP value (higher the better), with a certain percentage prediction
error (the lower the better) and a percentage confidence interval for the error (the smaller the better).

3.3.3. Univariate Predictor Performance

The major result from these predictions is that even simple techniques have a worst-case prediction of about 25%,
quite respectable for pragmatic prediction systems. Figure 8 shows the result of sorting the data by file size, since
GridFTP throughput varied with transfer file sizes. We grouped several file sizes into categories: 0–50 MB as 10M,
50–250 MB as 100M, 250–750 MB as 500M, and more than 750 MB as 1G, based on the achievable bandwidth. We
observe almost up to 10% increase in accuracy with context sensitive filtering.

In general, for our univariate predictors, we did not see a noticeable advantage of limiting either average or median
techniques using a sliding window or time frames. The ARIMA models did not see improved performance for our
data, although they are significantly more expensive compared to simple means and medians. This is likely due to
the irregular nature of our data. Average and median based predictors (and their temporal variants) for a GridFTP
dataset size of 50 values was computed under a millisecond, while autoregression on the same set consumed a few
milliseconds.

3.3.4. Multivariate Predictor Performance

Table 4 shows the performance gains of using a regression prediction with GridFTP and NWS network data (G+N)
over using the GridFTP log data univariate predictor in isolation (first two shaded columns in the table). We use the
moving average (AVG25) as a representative of univariate predictor performance. For our datasets, we observed a
4% to 6% improvement in prediction accuracy when the regression techniques with LV or AVG filling were used.
Regression with NoFill (throwing away the unmatched GridFTP data) shows no significant improvement when
compared with univariate predictors.

Table 4 also shows that including disk I/O component load variations in the regression model provides us with gains
of 2% to 4% (G+D Avg) when compared with AVG25 (first and third shaded columns in the table). Different filling
techniques (G+D Avg and G+D LV) perform similarly, and again NoFill shows no improvement, or even a decrease
in accuracy, when compared with univariate predictors.

Table 1: Normalized percent prediction error rates for the testbed site pairs for the August 2001 dataset. The figure denotes
four categories: (1) prediction based on GridFTP data in isolation (AVG25), (2) regression between GridFTP and NWS
network data with the three filling in techniques (G+N), (3) regression between GridFTP and disk I/O data with the three
filling in techniques (G+D), and (4) regression based on all three data sources (G+N+D). Shaded portions indicate a “best of
class” comparison between the approaches. All percentage values are averages based on different file categories.

Only
GidFTP

Logs
[VSF02]

Linear Regression between GridFTP
Logs and Network Load [VS02]

Linear Regression between GridFTP
Logs and Disk Load

Linear Regression using all Three
Data Sources

AVG25 G+N

NoFill
G+N
LV

G+N
Avg

G+D
NoFill

G+D
LV

G+D
Avg

G+N+D
NoFill

G+N+D
LV

G+N+D
Avg

LBL-ANL 24.4% 22.4% 20.6% 20% 25.2% 21.7% 21.4% 22.3% 17.7% 17.5%
LBL-UFL 15% 18.8% 11.1% 11% 20.1% 11.6% 11.9% 11.1% 8.7% 8%
ISI-ANL 15% 12% 9.5% 9% 13.1% 13% 11.4% 11% 8.9% 8.3%
ISI-UFL 21% 21.9% 16% 14.5% 22.7% 19.7% 18.8% 14.7% 13% 12%

ANL-UFL 20% 21% 20% 16% 21.8% 19.9% 19.3% 15.3% 16.7% 15.5%

Comparing the second and third block of data in Table 4 shows that all variations of predictors using NWS data
(G+N) perform better than predictors using disk I/O data (G+D) in general. This observation agrees with our initial
measurements that only 15% to 30% of the total transfer time is spent in I/O, while the majority of the transfer time
(in our experiments) is spent performing network transport.

When we include both disk I/O and NWS network data in the regression model (G+N+D) along with GridFTP
transfer logs, we see prediction error drop of 8% to 17% and up to 3% improvement when compared with G+N
(second and fourth shaded columns in Table 4) and a 6% improvement over G+D (third and fourth shaded columns
in Table 4). Overall, we see up to 9% improvement when we compare G+N+D with the original univariate
prediction based on AVG25.

Figure 9a compares the average prediction error for Moving Avg, G+D Avg, G+N Avg, and G+N+D Avg for all of
our site pairs (represents the shaded columns in Table 4) and also presents 95% confidence limits for our prediction
error rates. The prediction accuracy trend is as follows:

Moving Avg < (G+D Avg) < (G+N Avg) < (G+N+D Avg)
Figure 9b shows that the confidence interval (the variance in the error) does in fact reduce with more accurate
predictors, but the reduction is not significant for our datasets. We observed no noticeable improvements in using
polynomial models for our experiments.

4.0. Co-Allocating Data Transfers

ISI-ANL

0
5

10
15
20
25
30

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

LBL-ANL

0

10

20

30

40

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

LBL-UFL

0

10

20

30

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

ISI-UFL

0

10

20

30

40

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

ANL-UFL

0

10

20

30

40

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

Figure 8: Impact of classification and the reduction in percent error rates for the testbed (context-sensitive
filtering).

0%

5%

10%

15%

20%

25%

30%

35%

%
 E

rr
or

Moving Avg G+D Avg G+N Avg G+N+D Avg

 LBL-ANL LBL-UFL ISI-ANL ISI-UFL ANL-UFL

0%

1%

2%

3%

4%

5%

6%

7%

LBL-ANL LBL-UFL ISI-ANL ISI-UFL ANL-UFL

+
%

 C
on

fid
en

ce
 In

te
rv

al

Moving Avg G+D Avg G+N Avg G+N+D Avg

(a) Comparison of normalized percent errors for the predictors with 95% confidence limits

 (b) Comparison of intervals for the predictors

Figure 9: (a) Normalized percent prediction error and 95% confidence limits for August 2001 dataset based on (1)
prediction based on GridFTP in isolation (MovingAvg), (2) regression between GridFTP and disk I/O with Avg filling
strategy (G+D Avg); (3) regression between GridFTP and NWS network data with Avg filling strategy (G+N Avg), and
(4) regressing all three datasets (G+N+D Avg). Confidence Limits denote the upper and lower bounds of prediction error.
For instance, the LBL-ANL pair had a prediction range of [17.3% + 5.2%]. (b) Comparison of the percentage of
variability among the predictors.

4.0. Co-Allocating Data Transfers

Replica locations once identified and ranked using our selection (Section 2) and prediction (Section3) heuristics can
then be used to deliver the dataset collectively to the client. Due to the varied performance characteristics in the
replica locations and the links connecting them to the client, downloading large datasets (10 MB – 1 GB) can result
in varied end-user experience.

A typical Internet download between a client and a server is mired by several bottlenecks (Figure 10a) [Akamai00].
First, the bandwidth achievable by the client is limited by the bandwidth of the server’s connection to the Internet –
commonly referred as the First-Mile problem. The first-mile bottleneck is further compounded by simultaneous
requests to a server from multiple clients. Second, the achievable bandwidth is further limited by the congestion in
the link connecting the server and the client. Third, the bottleneck could be in the client’s own connectivity to the
Internet – the Last-Mile. Thus, the download speed is only as fast as the slowest link in the aforementioned setup.
Sophisticated solutions are required to significantly address this issue.

One way to improve download speeds is to employ complex server selection techniques to determine the best replica
location, offering high transfer rates, using a combination of server and network load details [Akamai02, VTF01]. In
practice, however, due to the shared nature of network links the load on them can vary unpredictably. Thus, in the
face of transient network conditions, downloading datasets even from the best of servers can often result in
pedestrian transfer rates.

A promising alternative is to download data from multiple locations, establishing multiple connections in parallel
(Figure 10b). With this approach, instead of downloading the entire dataset from a single sever, unique partial copies
of the dataset are fetched from multiple servers in parallel that are later reassembled at the client end.

This co-allocation of data transfers has several relevant properties of significant interest to us. First, it obviates the
need for complex server selection. Second, due to its decentralized nature the eventual performance achieved may
not be adversely affected by degradation in any of the co-allocated flows while also being resilient to server failures.
Third, the client download experience can be positively amplified with the aggregate bandwidth commensurate to
the summation of the individual transfer rates of each flow. Fourth, it significantly alleviates the first-mile (slow
server, serving a fast client) and the Internet congestion problem by distributing load to multiple servers and
different routes (Figure 25b). Even in the case of a slow client served by a fast server, co-allocation can offer
significant benefits due to fluctuations in network conditions.

Co-allocating data transfers
across multiple replica
locations can have
widespread applicability
beyond scientific data-
sharing communities. For
instance, Internet content
providers rely heavily on
content distribution networks
[JCD+00] for managing
consistent replicas of popular
content on surrogate, edge-
servers, closer to end-users
[Akamai00]. Content
distribution networks such as
Akamai [Akamai02] and
Speedera [Speedera02]
improve download speeds by

employing techniques such as request redirection [WPP02, KRR00] (to select best servers) to fetch data from less
congested links. Thus, parallel-downloading techniques can find significant use in such scenarios.

Last
Mile

First
Mile

S C Internet

Last
Mile

S CInternet

S

S

(a) Typical Internet Download (b) Co-Allocated Download

Figure 10: (a) Various bottlenecks in the Internet document download – the first
mile problem, the congestion in the links connecting server and client and the last
mile problem. (b) Co-Allocated download model minimizes the first mile and the
link congestion bottlenecks.

Peer-to-peer file sharing, where peers come
together in a cooperative, decentralized manner
to locate and share content, is yet another
candidate for parallel downloading [CP02]. The
enormous popularity of file sharing means that
networked content sharing systems are likely to
siphon much of the available Internet bandwidth.
In fact, recent studies indicate that file sharing
activity contributes up to 60 percent on any
service provider network [Sandvine02, SGG02].
Co-allocations in such cases can help improve
download speeds, reduce load on certain parts of
the network, alleviate loaded peers, etc.

Developing techniques for parallel downloads of
Internet documents is of significant interest in
the networking community and can be broadly
classified into stateless and stateful approaches.

Stateless approaches to the parallel access
problem rely on clients subscribing to several

mirror sites to restitute the data. This approach further makes extensive use of erasure codes (error correction codes)
[Rizzo97] to develop an “n” packet encoding of a “k” packet file, with the property that the file can be reassembled
from any “k” packet subset of the encoding [BCM+02, BLM02, BLM99]. Pros of this approach are: obviates the
need for maintaining file ranges and renegotiations on a per flow basis, fault tolerance and scalability; while the cons
are: constructing an “n” packet encoding is nontrivial, cost of encoding and decoding can be significant for large
dataset size, and clients and servers are required to agree, apriori, on common encoding schemes. Other related
effort includes Rabin’s [Rabin89] and Maxemchuk’s [Maxemchuk75] work on dispersing pieces of the file on
different nodes in the network for fault tolerance and dispersity routing respectively.

On the contrary, stateful techniques divide the file into disjoint sets, downloading different ranges from different
servers. In [RKB00, Gkantsidis02], the authors develop previous history-based and dynamic solutions,
demonstrating their techniques for web-based documents of the order of several hundred kilobytes. Accurate
predictions of range distributions are required for several stateful techniques, which are often quite difficult to obtain
in the face of changing network conditions. In [RKB00, Gkantsidis02], the authors rely on simple averages of
previous transfer rates as an estimate for range calculations per flow. Work from Beck et. al., demonstrated the
usefulness of dynamic distributed downloads in the context of streaming applications by fetching multiple copies of
file blocks in order to address jitter [PAD+02].

In our work we develop history-based and dynamic solutions similar to that of [RKB00, Gkantsidis02, PAD+02],
but extend it by addressing network fluctuations. Further, we employ prediction techniques (previous section) to
predict data transfer rates between sources and sinks, and use those for range calculations per flow that can
significantly improve our performance and reduce renegotiations. The use of encoding schemes, and thus the
stateless alternative, may not be suited for our purposes due to our concentration on large datasets, for which
encoding and decoding times can be quite significant.

4.1. Co-Allocation Architecture

The Globus Toolkit [FK98] provides a basic template for resource management [CFK99], which can be extended to
support the co-allocation of Grid data transfers. As illustrated in Figure 11, the architecture comprises of three main
components: an information service, local storage systems, and broker/co-allocator.

An application requiring access to data presents a description of the data to the broker. The broker, in conjunction
with information services [CFF+01], identifies possible alternatives from where the dataset in question can be
fetched. This set is then presented to the co-allocation agent, which uses a combination of information services and

Figure 11: Resource management architecture and the role
of co-allocation. Co-allocator combines broker decisions and
information services to map data transfer requests onto
storage systems using GridFTP and Globus Access to
Secondary Storage (GASS).

some heuristics to map the data transfer request across multiple replica locations to download the data in parallel
using GridFTP.

4.2. Partial Copy in GridFTP

GridFTP extends standard FTP implementations with several features needed in Grid environments, such as security
on control and data channels, multiple data channels for parallel streams, partial file transfers, and third party
transfers. Of particular interest to us is the ability to fetch partial copies of a file. Partial copy, and several other
features, is part of GridFTP’s extended retrieve functionality, which is used to request that a retrieve be done with
some additional processing on the server. This command is an extensible way of providing server-side data
reduction. With partial copy, a section of the file, defined by the starting offset and extent, will be retrieved from the
data server.

4.3. Co-Allocation Mechanisms

We now proceed to describe the co-allocation mechanisms that we have developed. Co-allocation is the idea of
splitting the data transfer among available servers to improve client perceived throughput.

4.3.1. Brute-Force Co-Allocation

Brute-force co-allocation is a basic scheme that works by dividing the file size equally among available flows. Thus,
if the data to be fetched is of size, “S” and there are “n” locations to fetch it from, then this technique assigns to each
flow a data block of size, “S/n”. With this technique, although all the available servers are utilized, bandwidth
differences among the various client-server links are not exploited.

4.3.2. History-based Co-Allocation

To address and exploit transfer rate differences among the various co-allocated flows, we develop a history-based
allocation scheme. With this technique, the block size per flow is commensurate to its predicted transfer rate, based
on a previous history of GridFTP transfers. Thus, the file-range distribution is based on the predicted merit of the
flow. If these predictions are not accurate enough, renegotiations of flow sizes might be necessary as slower links
can be assigned larger portions of data, which could weigh heavily on the eventual bandwidth achieved.

In order to obtain accurate predictions of transfer rates for the various links, we derived predictions based upon our
previous work on forecasting GridFTP transfers (Section 3). Our previous work delved into deriving accurate
predictions in the face of network and system load fluctuations. We developed a series of univariate and multivariate
predictors that forecast GridFTP transfers in isolation and in conjunction with network and disk load data
respectively. We used extensive regression analysis to predict within 15% error. Logs of previous GridFTP transfers
are fed to univariate or multivariate predictors to forecast. For purposes concerning co-allocations, we use a
temporal variation of univariate, average predictor (moving average over time).

With the history-based approach, the client divides a file into “n” disjoint blocks, corresponding to “n” servers. Each
server, “i”, 1 ≤ i ≤ n, has a predicted transfer rate of “Bi” to the client. In theory then, the aggregate bandwidth
achievable by the client for the entire download is:
 i=n

 A = Σ Bi
 i=1

where “Bi” is the predicted bandwidth per flow and “A” is the aggregate bandwidth. Such a speedup can only be
achieved when all servers keep sending data until the file is fully received – i.e., all servers being busy at all times
during the entire download. In practice, however, the achieved bandwidth is limited due to network congestion in
the various flows (resulting in some servers finishing earlier than others) and the client’s ability to handle the
bandwidth surplus. Thus, the rate-limiting factor could be anyone of the slowest links in the setup – the servers
themselves, the links connecting the client and servers, or the client itself.

Assuming the client is capable of handling the bandwidth surplus, range distributions are calculated as follows. For
each server “i”, 1 ≤ i ≤ n, and for a replica size, “S”, the block size per flow is:

 Bi
 si = ______ * S
 A

where “si” is the block size per flow. Thus, the block size per flow is commensurate to its transfer rate and its ratio
of contribution to the achievable aggregate bandwidth. Faster servers are assigned to deliver bigger portions of the
file, while slower servers are assigned smaller pieces. Ranges of partial transfers can then be formulated based on
this and the whole file reassembled at the client as follows:
 i=n

 S = Σ si
 i=1

The time taken for the entire download is:
 i=n si

T = Σ ______
 i=1 Bi

where “T” is the total download time. In this manner, this scheme addresses the transfer rate differences among the
various co-allocated flows.

4.3.3. Dynamic Co-Allocation

Although we have addressed the rate differences in the flows and exploited it to deliver proportionate pieces of the
file per flow, we do not address dynamic network variations that can cause degradation in transfer rates. In spite of
careful bandwidth estimates per flow, network traffic and system load can cause servers, previously determined as
fast or slow, to behave differently. This can significantly affect the download time. Thus, an end-user is typically
interested in dynamic rate adaptation – an allocation scheme that can dynamically adapt to changing network
conditions.

One way to address this is to monitor the progress of history-based co-allocated flows, to perform corrective
measures in case of performance degradation. For instance, if the performance in a particular flow drops below a
threshold, the transfer can be migrated to an alternate location or remaining data can be equally distributed among
other existing flows.

Although in theory, these are feasible alternatives, in practice, however, such techniques are quite complex to realize
for the following reasons. First, we need to add additional dynamic monitoring capability to our data movement
protocol to monitor each flow, which can significantly contribute to the overhead. Second, we need criteria to
determine performance degradation, which can be difficult due to changing network/system conditions. Third, even
if degradation could be determined, corrective measures such as transfer migration or resizing may require
significant renegotiation between clients and servers, which can be more costly than the existing decrease in
performance.

A promising alternative is the use of dynamic co-allocation. We developed two variations of dynamic co-allocation:
(1) Conservative Load Balancing and (2) Aggressive Load Balancing.

Conservative Load Balancing: With this approach, the rate, and thus how much a server delivers, is decided
dynamically instead of being based on previous history. The dataset in question is divided into “k” disjoint blocks of
equal size and each one of the available servers is assigned to deliver, in parallel, one block initially. Once a server
delivers the block, another block is requested and so on, until the entire file is downloaded.

Faster servers and servers connected to the client through less congested or faster links, will deliver quickly, thus
serving larger portions of the file when compared to their slower counterparts. Thus, with this technique, the load on
the co-allocated flows is automatically adjusted so that congested links and loaded or slower servers are not further
burdened.

With this technique, the number of blocks per download can affect the throughput achieved. We could either have a
large number of small blocks or a small number of large blocks. We study the effect of using different block counts
and sizes in Section 4.

The key to achieving maximum aggregate bandwidth, as stated earlier, is to keep all available servers busy at all
times. In the best case, each server is only idle for duration “t”, where “t” is the time elapsed since the server
delivered the last block and until it receives a request for a new block. Neglecting client side processing and
multiprogramming at both ends, this is roughly equivalent to one round-trip time, which is insignificant compared to
the entire download time.

One obvious downside to this approach is the eventuality of waiting on the slowest server to deliver the final block
(same as history-based allocation). An alternative is to stop the slowest flow or dynamically resize blocks to fetch
the remaining data from the other servers, although we do not employ this technique.

Aggressive Load Balancing: With the previous method, although faster servers deliver quickly, we only fetch one-
block size each time around. Similarly, slower servers would again be assigned to deliver blocks. To address these
issues, we add the following functionality to our load balancing scheme: (1) progressively increase the amount of
data requested from faster servers; and (2) reduce the amount of data requested from slower servers or stop
requesting data altogether.

In order to achieve the stated effect, we develop a few heuristics. For each block delivered by each flow, we
compute the rate achieved and compare it against the running maximum of all flow rates. If the rate at which a flow
delivered the block is greater than the running maximum, we double the block size for that flow and reset the
maximum; if it is less, we maintain the one-block size for the flow; and if the rate is significantly less than the
maximum, we stop using the flow. Thus, using these techniques, we address dynamic rate changes in the various co-

allocated flows.

4.4. Results and Analysis

We evaluated the performance of our co-
allocation schemes on data collected over two
distinct two-week periods during October and
December 2002. In the following sections we
describe the experimental setup, traces and our
results.

4.4.2. Experiment Setup

Our experiments comprised GridFTP transfers,
using our co-allocation clients, between five sites
in our testbed (Figure 7). A prerequisite for
downloading data from multiple servers is that
the various links connecting the client and
servers be bottleneck disjoint [RKB00, BLM99].
If the client-server links share the same
bottleneck then there can be little improvement
due to co-allocation. From Figure 3, it is evident
that the various client-server links for our setup
are bottleneck-disjoint (bottleneck bandwidths
were determined using iperf [TF01]).

We performed wide-area data transfer

experiments using the GridFTP data movement tool. Our servers were standard GridFTP available from the Globus
2.0 Toolkit, while our clients included the various co-allocation schemes. Transfers comprised several file sizes
ranging from 10 MB to 1 GB. These transfers were performed with tuned TCP buffer settings (calculated using the
bandwidth delay product as shown in Figure 3) and eight parallel streams (per co-allocated flow) to achieve
enhanced throughput. All our transfers were performed with co-allocation clients at either ANL or UFL. Table 2
summarizes our trace characteristics. We use a mix of fast and slow servers to study the effect therein.

Trace Characteristics
Server GridFTP with support for

partial copy
Download Client Schemes
No co-allocation
Static
Dynamic

Base client,
Brute and History
Conservative and Aggressive

When October and December 2002
Duration Two weeks in each month
Client Locations ANL, UFL
File Sizes 10MB, 100MB, 500MB, 1GB
Transfers per file size per co-
allocation scheme

50 to 100

Total Transfers (each month) 1000 – 1200
Prediction Strategy for
History-based downloads

Moving average (over time)
of previous transfers

Block Counts for Dynamic
downloads

5, 10 and 15

Number of Parallel Streams
per co-allocated flow

8

Tuned TCP buffers per
stream

Yes

Table 2: Trace characteristics for Co-Allocation experiments
during October and December 2002.

4.4.3. Performance

In this section we discuss the performance of our co-allocation clients based on the data collected during October
and December 2002. We evaluate four co-allocation schemes: (1) Brute-Force Co-allocation (Brute), (2) History-
based Co-allocation (History), (3) Conservative Load Balancing (Conservative) and (4) Aggressive Load Balancing
(Aggressive). For the two load balancing techniques, we study the effect of various block counts (Conservative-5,
Conservative-10, Conservative-15, Aggressive-5, Aggrssive-10 and Aggressive-15) on the bandwidth achieved. We
compare each co-allocation scheme against the base case of fetching the entire file from a single server and study the
bandwidth improvements therein. The bandwidth measures are averages based on two-week’s worth of transfers.

Impact of Client-Server Configurations on Downloads

In Figures 12 and 13, we study the effect of slow servers (or links) with similar performance, serving a fast client.
We see that all co-allocation schemes perform better than the base case of downloading the entire file from a single
server. We observe that load balancing schemes (conservative and aggressive with block counts of 5) perform better
than brute-force or history-based co-allocation and load balancing offers almost double the performance (for our
experiments) when compared with the base case. In the case of slow servers serving fast clients there is usually
residual bandwidth available that goes unused with typical downloads. With a distributed download, this residual
bandwidth is utilized to achieve enhanced throughput.

In Figures 14, 15 and 16, we use a mix of slow and fast servers to study its effect on download. We observe that co-
allocation schemes are either better (improvements of up to 2 MB/sec) than or comparable to faster servers in
isolation. The figures indicate that the gain due to co-allocation is inversely proportional to the performance gap
between the servers. In Figure 14, a faster server saturates a client quickly, leaving available little residual
bandwidth for other servers. Co-allocation in such cases offers very little improvement. In Figures 15 and 16, as the
performance gap between the servers is low, we observe gains due to co-allocation.

Shared Bottlenecks

As mentioned earlier, in order for a distributed download to payoff, there should exist residual network bandwidth
from the client to the additional servers. If not, then accessing additional sites will interfere with existing
connections and contribute to the congestion. To study the effect of shared bottlenecks we choose two servers each
from the LBL and ISI domains respectively. As stated earlier, in our experiments, each flow uses parallel streams
and tuned TCP buffers to fully utilize the available bandwidth. Thus, adding another server (with the same
bottleneck) interferes with existing connections. In Figure 17, we can see that the bandwidth achieved due to a
distributed download is much less than that achieved by individual servers in isolation.

Sensitivity of Schemes towards Parameters

We analyzed the effect of file sizes, number of flows and block counts on the download performance – i.e.,
threshold values beyond which co-allocation offered gains or saturated. Figures 12 through 16 show that all our co-
allocation schemes offer significant performance improvements (when compared with the base case) as the file size
increases. For smaller file sizes we see no improvements in using co-allocation using our data movement tool. A low
value for the performance ratio, R, where R is:

R = Co-allocation Cost / Total Time to Download,
results in gains due to co-allocation. The cost of co-allocation involves connection establishment, negotiations,
reassembly, resizing, etc. For smaller files, this co-allocation cost is high compared to the total download time.

In increasing the number of co-allocated flows (Figures 15 and 16) we observed that for our testbed and client-
server configurations, download performance reached saturation at about 3 or 4 flows. The natural question then is
“With how many flows should a transfer be launched?” While this is subjective to client-server configurations,
choosing an appropriate number of flows is vital to the performance achieved. One way to address this would be to
start with a subset of servers ranked using our prediction strategies and applying load balancing techniques to this
set. This way we can exploit the merits inherent to both static and dynamic models.

Figure 12: Servers are at ISI and UFL with client at ANL
(Oct’02). First two bars in each file size denote
downloading the entire file from either ISI or UFL, while
others denote co-allocated downloads using the two
servers. Depicts 95% confidence ranges for bandwidth.

Figure 13: Servers are at ISI and BU with client at UFL
(Dec’02). Depicts 95% confidence ranges for bandwidth.

0

1

2

3

4

5

6

7

8

9

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ISI UFL Brute History Conservative-5 Aggressive-5

0

1

2

3

4

5

6

7

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ISI BU Brute History Conservative-5 Aggressive-5

0

2

4

6

8

10

12

14

16

18

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

LBL UFL Brute History Conservative-5 Aggressive-5

0

1

2

3

4

5

6

7

8

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ANL ISI Brute History Conservative-5 Aggressive-5

Figure 14: Servers are at LBL and UFL with client at
ANL (Oct’02). Depicts 95% confidence ranges for

Figure 15: Servers are at ANL and ISI with client at UFL
(Dec’02). Depicts 95% confidence ranges for bandwidth.

For our various load balancing techniques, we
studied the effect of using different block counts (5,
10 and 15). Figure 18 compares the variations of
conservative and aggressive load balancing
techniques. From the figure we can infer that for
smaller file sizes the load balancing schemes perform
better with less number of blocks, while for larger
file sizes more blocks result in better performance.
For our experiments and our block counts we saw
performance improvements of up to 1-2 MB/sec.
With small files more blocks will result in more
overhead in terms of connection establishment,
reassembly, etc., when compared to the total
download time; while with large files less blocks can
mean slower servers delivering bigger portions of the
file.

Waiting on Slow Servers

For the load balancing schemes, we analyzed the
effect of faster servers waiting on slow servers to
deliver the last block. From Figure 19 we can

observe that with conservative load balancing (out of the times when slower servers finished last), faster servers are
idle for up to 17% of the total download time waiting for slower servers to finish delivering the last block. While
aggressive balancing is not altogether devoid of this trend, we observe almost up to 40% reduction in wait times due
to a progressive increase in the amount of data fetched from faster servers. The figures also imply that using less
number of blocks with larger files results in slower servers having to deliver larger pieces of data, thereby increasing
the idle time of faster servers. This suggests that further techniques such as preempting flows or dynamic block
sizing, to fetch more from faster servers, are worth investigating.

(b) Two servers at ISI sharing the same bottleneck to
the client at UFL (Dec’02).

Figure 17: Servers sharing the same network bottleneck to the client. Depicts 95% confidence ranges for bandwidth.

(a) Two servers at LBL sharing the same bottleneck to
the client at ANL (Oct’02).

0

2

4

6

8

10

12

14

16

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

LBL1 LBL2 Brute
History Conservative-5 Aggressive-5

0

1

2

3

4

5

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ISI1 ISI2 Brute History Conservative-5 Aggressive-5

0

1

2

3

4

5

6

7

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)
ANL ISI BU
Brute History Conservative-5
Aggressive-5

Figure 16: Servers are at ANL, ISI and BU with client at
UFL (Dec’02). Depicts 95% confidence ranges for
bandwidth.

0
1
2
3
4
5
6
7
8

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Conservative-5 Conservative-10 Conservative-15

(a) Conservative Load Balancing with servers at ISI and UFL

0

2

4

6

8

10

12

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Conservative-5 Conservative-10 Conservative-15

(b) Conservative Load Balancing with servers at LBL and ISI

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Sie

B
W

 (M
B

/s
ec

)

Conservative-5 Conservative-10 Conservative-15

(c) Conservative Load Balancing with servers at LBL, ISI and UFL

0
1
2
3
4
5
6
7
8
9

10M 100M 500M 1G
File Sie

B
W

 (M
B

/s
ec

)

Aggressive-5 Aggressive-10 Aggressive-15

 (d) Aggressive Load Balancing with servers at ISI and UFL

0

2

4

6

8

10

12

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Aggressive-5 Aggressive-10 Aggressive-15

 (e) Aggressive Load Balancing with servers at LBL and ISI

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Aggressive-5 Aggressive-10 Aggressive-15

 (f) Aggressive Load Balancing with servers at LBL, ISI and UFL

Figure 18: Comparison between the variants of conservative and aggressive load balancing schemes using different block
counts for a client at ANL (Oct’02). Conservative-5 denotes a block count of 5.

5.0. Conclusions and Discussion

In this paper, we have analyzed the orchestration of bulk data movement in Grid environments. We discuss in detail
the backdrop of events required to facilitate rapid, efficient and expedited access to massively replicated bulk data.
In this regard, we summarize our previous efforts from three fronts, all in the context of the Globus Toolkit. First,
we describe a scalable, decentralized replica selection architecture that uses a combination of user specified policies
and performance heuristics to locate data from among numerous replicated alternatives. Some of our heuristics
include the use of performance estimates of data transfer times, exposed by replica locations, as a key metric of
distinction. Second, we develop forecasting machinery to predict future performance rates between sources and
sinks. We demonstrate our prediction mechanisms using the GridFTP data movement protocol, progressing from
forecasts based on GridFTP transfer logs in isolation to a combination of logs and ambient monitoring data
capturing networks and disks. Using these techniques we demonstrate prediction efficacy to be well within 15%
error for our testbed sites. Third and finally, we develop co-allocation architecture to use these “selected” and
“ranked” sites in unison to download bulk datasets in parallel. With our history based and dynamic load balancing
techniques we observe up to almost 2x performance improvements using the GridFTP tool for our sites.

As we alluded before, there is more to bulk data movement than those presented in this paper. In this following
discussion, we will briefly highlight some issues. At a very high level, we could classify data management in terms
of “system challenges” and “transfer challenges”. By system challenges we refer to all things except the act of data
transfer. For instance, this might include ensuring that the dataset in question is available for access which would
require the underlying storage system to provide “pinning” abilities; or might require ensuring enough space
availability on the remote system for data staging which involves reservation abilities; storage quality of service
agreements and guarantees, etc. Other, equally important, issues concern dynamic replica management (replication
keeping in mind temporal access patterns) and intelligent scheduling of data transfer requests alongside
computation.

Thematic to this paper is the transfer challenge. A bulk of our discussion earlier revolved around transfer-rate
estimates and parallel downloading which are key questions guiding several research endeavors. Yet, more needs to
be addressed. Tuning of transfer settings is an often used practice in high throughput scientific environments. Bulk
data transfers of the order of several gigabytes are usually performed with optimized TCP buffer windows, parallel
streams, etc., to achieve enhanced throughput. In fact, all our GridFTP transfer experiments were performed with a 1

(a) Servers at ANL and ISI with client at UFL (Dec’02). (b) Servers at LBL and UFL with client at ANL (Oct’02).

Figure 19: (a) ANL is the faster server having to wait on ISI. (b) LBL is the faster server having to wait on UFL. Bars denote
the wait time of the faster server as a percentage of total download time. Also depicts 95% confidence for the % wait times.

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Size

W
ai

t t
im

e
as

 a
 p

er
ce

nt
 o

f
to

ta
l d

ow
nl

oa
d

tim
e

Conservative-5 Aggressive-5

0
2
4
6
8

10
12
14
16
18
20

10M 100M 500M 1G
File Size

W
ai

t t
im

e
as

 a
 p

er
ce

nt
 o

f t
ot

al

do
w

nl
oa

d
tim

e

Conservative-5 Aggressive-5

MB TCP buffer size and eight parallel streams as opposed to system defaults of 64 KB and a single stream. System
defaults are naturally not tuned for the special use case of the high throughput community for reasons concerning
fair sharing. Although, with the proliferation of Grid based systems we are quickly faced with the need to provide
solutions that exploit the bandwidth explosion. A common rule-of-thumb for buffer tuning is to use “RTT *
Bottleneck Bandwidth” as an optimal window size between any client-server pair. Tools such as Enable from LBNL
extend this further by providing auto-tuning of buffers between any site pair, by exploiting previous history of
transfers [TGL+01]. No such service exists for automatically determining the appropriate number of parallel streams
for any given site pair. One way to address this issue is to perhaps use previous history of transfers (consisting of
bandwidth measures due to various parallel stream counts) between any site pair in conjunction with a network
monitoring tool to arrive at educated guesses.

In a related vein, checkpoint file management poses interesting data movement questions. Grid environments consist
of multiple sub-jobs with associated data running on different locations. Machines may be reclaimed and might
become unavailable in the immediate future. In such cases, checkpoint data or results from computations thus far
may have to be moved to the source in an optimal fashion from many locations. Kangaroo, a hop-based checkpoint
management system, from Condor addresses some issues therein [TBS+01]. Thus, in order to facilitate efficient bulk
data movement, we need to address several of the aforementioned system and transfer challenges.

Acknowledgments

This research was supported in part by fellowships from Argonne National Laboratory and The University of
Mississippi. The fellowship from ANL (Summer of 2000 and academic years 2001 and 2002) was due to support by
the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific Computing
Research, U. S. Department of Energy, under contract No. W-31-109-Eng-38. The fellowship from The University
of Mississippi (Spring 2003) was due to support from the Graduate School’s Doctoral Dissertation Award. This
research was also supported by the U.S. Department of Energy under contract No. DE-AC05-00OR22725 with UT-
Battelle, LLC. We further thank all the system administrators of our testbed sites for their valuable assistance.

Author Biography

Sudharshan S. Vazhkudai is a Research Staff Member at the Computer Science and Mathematics Division of Oak
Ridge National Laboratory (ORNL) where he is part of the Network and Cluster Computing Group. His current
work revolves around constructing a Distributed Data Grid infrastructure intended to bring massive neutron source
data to the TeraGrid. He received his Ph.D. and M.S. in Computer Science from The University of Mississippi in
2003 and 1998 respectively. Prior to that, he received his B.E. in Computer Science from Karnatak University, India
in 1996. His doctoral research was on facilitating efficient, rapid access to data in massively distributed Grid
environments using user guided selections, transfer-rate predictions and co-allocations. His doctorate was in
conjunction with Argonne National Laboratory’s Globus Toolkit Project where he was a Research Associate for
three years receiving a Givens fellowship (Summer 2000) and a doctoral dissertation fellowship (academic years
2001 and 2002). From 1998 to 2000 he was the project leader of PODOS (Performance Oriented Distributed OS)
leading the design and development of a distributed Linux effort, building a high-performance communication
architecture, a networked file system and a load sharing environment. His current research interests are distributed
resource management in extensible terascale systems, distributed storage management, directory services and peer-
to-peer systems.

References

[Akamai00] Internet Bottlenecks: The Case of Edge Delivery Services. 2000, Akamai Whitepaper.
[Akamai02] Akamai, http://www.akamai.com, 2002.

[ACF+02] Allcock, W., A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets. Network and
Computer Applications, 2002.
[Adve93] Adve, V.S., Analyzing the Behavior and Performance of Parallel Programs, in Department of Computer
Science. 1993, University of Wisconsin.

[AFN+01] Allcock, W., I. Foster, V. Nefedova, A. Chevrenak, E. Deelman, C. Kesselman, A. Sim, A. Shoshani, B.
Drach, and D. Williams. High-Performance Remote Access to Climate Simulation Data: A Challenge Problem for
Data Grid Technologies. in Supercomputing. 2001.
[BCM+02] Byers, J.W., et al. Informed Content Delivery Across Overlay Networks. in Proceedings of ACM
SIGCOMM'02. 2002.
[BLM99] Byers, J.W., M. Luby, and M. Mitzenmacher. Accessing Multiple Mirror Sites in Parallel: Using Tornado
Codes to Speed Up Downloads. in Proceedings of IEEE INFOCOM. 1999.
[BLM02] Byers, J.W., M. Luby, and M. Mitzenmacher, A Digital Fountain Approach to Asynchronous Reliable
Multicast. IEEE J-SAC, Special Issue on Network Support for Multicast Communication, 2002. 20(8): p. 1528-
1540.
[BMK96] Basu, S., A. Mukherjee, and S. Kilvansky, Time Series Models for Internet Traffic. 1996, Georgia
Institute of Technology.
[BMR+98] Baru, C., R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource Broker. in CASCON'98.
1998.
[CFF+01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, Grid Information Services for Distributed
Resource Sharing, Proceedings of the Tenth IEEE International Symposium on High-Performance Distributed
Computing (HPDC-10), IEEE Press, August 2001.
[Cole89] Cole, M., Algorithmic Skeletons: Structured Management of Parallel Computation. 1989: Pitman/MIT
Press.
[CQ93] Clement, M.J. and M.J. Quinn. Analytical Performance Prediction on Multicomputers. in
Supercomputing'93. 1993.
[Crovella99] Crovella, M.E., Performance Prediction and Tuning of Parallel Programs, in Department of Computer
Science. 1999, University of Rochester.
[CSA98] Cardwell, N., S. Savage, and T. Anderson, Modeling the Performance of Short TCP Connections. 1998,
Computer Science Department, Washington University.
[CW95] R.A. Coyne and R.W. Watson. The Parallel I/O Architecture of the High-Performance Storage System
(HPSS). In IEEE MSS Symposium. IEEE Computer Society Press, 1995.
[DataGrid02] The Data Grid Project, http://www.eu-datagrid.org, 2002.
[DO00] Dinda, P. and D. O'Hallaron, Host Load Prediction Using Linear Models. Cluster Computing, 2000. 3(4).
[Downey97] Downey, A. Queue Times on Space-Sharing Parallel Computers. in 11th International Parallel
Processing Symposium. 1997.
[Edwards84] Edwards, A.L., An Introduction to Linear Regression and Correlation. 1984: W.H. Freeman and
Company.
[FK98] Foster, I. and C. Kesselman. The Globus Project: A Status Report. in IPPS/SPDP '98 Heterogeneous
Computing Workshop. 1998.
[FSW+99] Faerman, M., A. Su, R. Wolski, and F. Berman. Adaptive Performance Prediction for Distributed Data-
Intensive Applications. in ACM/IEEE SC99 Conference on High Performance Networking and Computing. 1999.
Portland, Oregon.
[Globus02] The Globus Project, http://www.globus.org, 2002.
[Gkantsidis02] Gkantsidis, C. Parallel Download, http://www.cc.gatech.edu/~gantsich/parallel_download.htm, 2002.
[GM01] Guo, L. and I. Matta, The War between Mice and Elephants. 2001, Computer Science Department, Boston
University.
[GP94] Groschwitz, N. and G. Polyzos. A Time Series Model of Long-Term Traffic on the NSFnet Backbone. in
IEEE Conference on Communications (ICC'94). 1994.
[GriPhyN02] The GriPhyN Project, http://www.griphyn.org, 2002.
[GS00] Gray, J. and P. Shenoy. Rules of Thumb in Data Engineering. in International Conference on Data
Engineering ICDE2000. 2000. San Diego: IEEE Press.
[GT99] Geisler, J. and V. Taylor. Performance Coupling: Case Studies for Measuring the Interactions of Kernels in
Modern Applications. in SPEC Workshop on Performance Evaluation with Realistic Applications. 1999.
[HD96] Harchol-balter, M. and A. Downey. Exploiting Process Lifetime Distributions for Dynamic Load Balancing.
in 1996 Sigmetrics Conference on Measurement and Modeling of Computer Systems. 1996.
[HJS+00] Hoschek, W., J. Jaen-Martinez, A. Samar, and H. Stockinger. Data Management in an International Grid
Project. in 2000 Internationsl Workshop on Grid Computing (GRID 2000). 2000. Bangalore, India.
[Holtman00] Holtman, K. Object Level Replication for Physics. in 4th Annual Globus Retreat. 2000. Pittsburgh.
[HP91] Haddad, R. and T. Parsons, Digital Signal Processing: Theory, Applications and Hardware. 1991:
Computer Science Press.

[HS97] T.A. Howes and M.C. Smith. LDAP Programming Directory Enabled Application with Lightweight
Directory Access Protocol. Technology Series. MacMillan, 1997.
[HSS00] Hafeez, M., A. Samar, and H. Stockinger. Prototype for Distributed Data Production in CMS. in 7th
International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2000). 2000.
[JCD+00] Johnson, K., et al. The Measured Performance of Content Distribution Networks. in Proceedings of the
5th International Web Caching and Content Delivery Workshop. 2000. Lisbon, Portugal.
[Jones02] Jones, R. The Public Netperf Homepage, http://www.netperf.org/netperf/NetperfPage.html. 2002.
[KRR00] Kangasharju, J., K. Ross, and J.W. Roberts. Performance Evaluation of Redirection Schemes in Content
Distribution Networks. in Proceedings of 4th Web Caching Workshop. 1999. San Diego.
[LLM88] M. Litzkow, M. Livny, and M. Mutka. Condor – A Hunter of Idle Workstations. In Proc. 8th Intl Conf. on
Distributed Computing Systems, pages 104–111, 1988.
[LSZ+02] Lamehamedi, H., B. Szymanski, S. Zujun, and E. Deelman, Data Replication Strategies in Grid
Environments, in 5th International Conference on Algorithms and Architecture for Parallel Processing,
ICA3PP'2002, Bejing, China, October 2002, IEEE Computer Science Press, Los Alamitos, CA, 2002, pp. 378-383
[LSZ+03] Lamehamedi, H., B. Szymanski, S. Zujun, and E. Deelman, Simulation of Dynamic Replication
Strategies in Data Grids, in 12th Heterogeneous Computing Workshop (HCW2003), Nice, France, April 2003.
[LIGO02] The LIGO Experiment, http://www.ligo.caltech.edu/, 2002.
[Mach97] The Mach Project Home Page, http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html,
1997.
[Maxemchuk75] Maxemchuk, N.F. Dispersity Routing. in Proceedings of the International Conference on
Communications. 1975.
[Merkey94] Merkey, P., Beowulf Project at CESDIS, http://beowulf.gsfc.nasa.gov/, 1994.
[ML90] Mak, V.W. and S.F. Lundstrom, Predicting the Performance of Parallel Computations. IEEE Transactions
on Parallel and Distributed Systems, 1990: p. 106-113.
[MLB95] Malpani, R., J. Lorch, and D. Berge. Making World Wide Web Caching Servers Cooperate. in
Proceedings of the Fourth International WWW Conference. 1995.
[MMR+01] Malon, D., E. May, S. Resconi, J. Shank, A. Vaniachine, T. Wenaus, and S. Youssef. Grid-enabled
Data Access in the ATLAS Athena Framework. in Computing and High Energy Physics 2001 (CHEP'01)
Conference. 2001.
[NetLogger02] NetLogger: A Methodology for Monitoring and Analysis of Distributed Systems. 2002.
[NM02] Newman, H. and R. Mount. The Particle Physics Data Grid, www.cacr.caltech.edu/ppdg.
[OM88] Ostle, B. and L.C. Malone, Statistics in Research. 1988: Iowa State University Press.
[PAD+02] Planck, J.S., et al., Algorithms for High Performance, Wide-Area, Distributed File Downloads. 2002,
University of Tennessee, Department of Computer Science.
[Pankratz91] Pankratz, A., Forecasting with Dynamic Regression Models. 1991: John Wiley & Sons Inc.
[Rabin89] Rabin, M.O., Efficient Dispersal of Information for Security. Journal of the ACM, 1989. 38: p. 335-348.
[RF01] Rangahathan, K., and I. Foster, Design and Evaluation of Replication Strategies for a High Performance
Data Grid, in Computing and High Energy and Nuclear Physics 2001 (CHEP’01) Conference. 2001.
[Rizzo97] Rizzo, L., Effective Erasure Codes for Reliable Computing. Computer Communications Review, 1997.
[RKB00] Rodriguez, P., A. Kirpal, and W.E. Biersack. Parallel-access for Mirror Sites in the Internet. in
Proceedings of IEEE INFOCOM. 2000.
[RLS98] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Management for High
Throughput Computing. In Proc. 7th IEEE Symp. on High Performance Distributed Computing. IEEE Computer
Society Press, 1998.
[Sandvine02] Peer-to-Peer File Sharing: The Effects of File Sharing on a Service Provider's Network. 2002,
Sandvine Whitepaper.
[SB98] Schopf, J.M. and F. Berman. Performance Predictions in Production Environments. in IPPS/SPDP'98.
1998.
[SC00] Shen, X. and A. Choudhary. A Multi-Storage Resource Architecture and I/O, Performance Prediction for
Scientific Computing. in 9th IEEE Symposium on High Performance Distributed Computing. 2000: IEEE Press.
 [Schopf97] Schopf, J.M. Structural Prediction Models for High Performance Distributed Applications. in Cluster
Computing (CCC'97). 1997.
[SDSS03] Sloan Digital Sky Survey, http://www.sdss.org/, 2003.
[SFT98] Smith, W., I. Foster, and V. Taylor. Predicting Application Run Times Using Historical Information. in
IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel Processing. 1998.

[SGG02] Saroiu, S., P.K. Gummadi, and S. Gribble. A Measurement Study of Peer-to-Peer File Sharing Systems. in
Proceedings of Multimedia Computing and Networking (MMCN'02). 2002.
[Speedera02] Speedera, http://www.speedera.com, 2002.
[SW02] Swany, M. and R. Wolski. Multivariate Resource Performance Forecasting in the Network Weather
Service. in Submitted for Publication. 2002.
[SYSSTAT02] SYSSTAT Utilities Homepage, http://perso.wanadoo.fr/sebastien.godard/, 2002.
[Tanenbaum95] Tanenbaum. A., Distributed Operating Systems, Prentice Hall, Englewood Cliffs, NJ, 1995.
[TB86] Thomasian, A. and P.F. Bay, Queuing Network Models for Parallel Processing of Task Systems. IEEE
Transactions on Computers, 1986. 35(12).
[TBS+01] Thain. D, J. Basney, S. Son, and M. Livny. The Kangaroo Approach to Data Movement on the Grid. in
Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10). San Francisco, California. August
2001.
[TF01] Tirumala, A. and J. Ferguson. Iperf 1.2 - The TCP/UDP Bandwidth Measurement Tool,
http://dast.nlanr.net/Projects/Iperf. 2001.
[TGL+01] Tierney, B., D. Gunter, J. Lee, and M. Stoufer, Enabling Network-Aware Applications. in 10th IEEE
Symposium on High Performance Distributed Computing (HPDC-10). August 2001.
[Vazhkudai03] Vazhkudai, S., Enabling the Co-Allocation of Grid Data Transfers.
in 4th International Workshop on Grid Computing (GRID 2003), Phoenix, Arizona, November 2003.
[VS03] Vazhkudai, S., and J. Schopf. Using Regression Techniques to Predict Large Data Transfers. Journal of
High Performance Computing Applications - Special Issue on Grid Computing: Infrastructure and Applications,
2003.
[VTF01] Vazhkudai, S., S. Tuecke, and I. Foster. Replica Selection in the Globus Data Grid. in First IEEE/ACM
International Conference on Cluster Computing and the Grid (CCGRID 2001). 2001. Brisbane, Australia: IEEE
Press.
[Wang99] Wang, J., A Survey of Web Caching Schemes for the Internet. ACM Computer Communication Review,
1999.
[Web100Project02] The Web100 Project, http://www.web100.org, 2002.
[WPP02] Wang, L., V. Pai, and L. Peterson. The Effectiveness of Request Redirection. in Proceedings of the 5th
OSDI Symposium. 2002.
[Wolski98] Wolski, R., Dynamically Forecasting Network Performance Using the Network Weather Service.
Cluster Computing, 1998.
[YM01] Yilmaz, S. and I. Matta, On Class-based Isolation of UDP, Short-lived and Long-lived TCP Flows. 2001,
Computer Science Department, Boston University.
[ZLP96] Zaki, M.J., W. Li, and S. Parthasarathy. Customized Dynaimic Lad Balancing for Network of Workstations.
in High Performance Distributed Computing (HPDC'96). 1996.
[ZMF98] Zhang, L., S. Michel, and S. Floyd. Adaptive Web Caching: Towards a New Global Caching Architecture.
in Proceedings of the Third International Caching Workshop. 1998.
[ZQK00] Zhang, Y., L. Qiu, and S. Keshav. Speeding Up Short Data Transfers: Theory, Architecture Support and
Simulation Results. in NOSSDAV 2000. 2000. Chapel Hill, NC.
[ZQK99] Zhang, Y., L. Qiu, and S. Keshav, Optimizing {TCP} Start-up Performance. 1999, Department of
Computer Science, Cornell University.

